
Exam 2024 May

Contents
Exam Instructions

Task 1: Distance Traveled

Task 2: Booklet Layout

Task 3: Reversed Text

Task 4: First Double Peak

Task 5: Robust Values

Task 6: Population Convergence

Task 7: Event Manager

Task 8: Name Frequency

Task 9: Count Differences

Task 10: Limited Event Manager

Course name: Computer programming

Course number: 02002 and 02003

Exam date: 30th of May 2024

Aids allowed: All aids, no internet

Exam duration: 4 hours

Weighting: All tasks have equal weight

Number of tasks: 10

Number of pages: 13

Exam Instructions
Prerequisites
To be able to solve the exam tasks, you need to have a computer with Python installed. All exam problems can be solved in
either IDLE or VS Code.

Exam Material
The exam material consists of a single zip file. You should unzip this file to a folder on your computer. The zip file contains the
exam text as a PDF document in English 2024_05_exam_English.pdf (this document) and the same document in Danish
2024_05_exam_Danish.pdf . The zip file also contains a folder 2024_05_exam with the following content:

An empty Python file for each task, <task_name>.py , where <task_name> is the name of the task. These are the files
where you should write your solutions and submit them at the end of the exam.

A Python file for each task, test_task_<n>_<task_name>.py , where <n> is the task number, and <task_name> is the
name of the task. These contain code that checks if your solution has the correct behavior for the example in the exam
text. To be sure that you use the tests as intended, do not edit these files.

A Python file test_tasks_all.py that runs all test files.

A folder files containing data files needed to test tasks involving files, if any.

Solving Exam Tasks
If you are using VS Code, you should start by going to File Open Folder.. and choosing the 2024_05_exam folder
inside the folder you unzipped to above.

When solving the exam tasks, follow the instructions in the exam text. You can test your solutions by running the provided
testing scripts. For the testing scripts to work, your solutions must be in the same folder as the testing scripts.

If you believe there is a mistake or ambiguity in the text, you should use the most reasonable interpretation of the text to solve
the task to the best of your ability. If we, after the exam, find inconsistencies in one or more tasks, this will be taken into
account in the assessment.

Your solutions should only use the tools that have been taught in the course. Solutions that import modules other than math ,
numpy , os , or matplotlib will not be graded. The test scripts provided do not check for this, so it is your responsibility to

ensure that your solutions only use the allowed modules.

Evaluation of the Exam
We will run a number additional tests on each of your solutions that checks if it behaves as specified in the task. The fraction of
correct tests is the score for each task. The overall score is the average of the scores.

A solution where the provided test fails is incorrect. This can be because the file or function are named incorrectly. However, if
a provided test passes, it does not guarantee that the solution is correct for our additional tests.

→

Handing in
To hand in your solutions, upload your Python files with solutions to the Digital Exam system. In the Digital Exam system, files
can be submitted as either main document or attachments. You can upload any of your solutions as the main document, and
the rest as attachments.

You should hand in exactly the following files:

booklet_layout.py

count_differences.py

distance_traveled.py

event_manager.py

first_double_peak.py

name_frequency.py

population_convergence.py

reversed_text.py

robust_values.py

Any file handed in that is not in the list above will not be taken into account in your assessment.

Task 1: Distance Traveled
The distance traveled by an object falling from standstill is calculated using the formula

where is the distance traveled (in meters), is the duration of the fall (in seconds), and is the gravitational acceleration on
Earth, equal to .

You should write a function that takes as input the duration of the fall (in seconds). The function should return the distance
traveled (in meters).

As an example, consider an object falling for seconds. The distance traveled is

which is what your function should return, as shown in the code cell below.

The filename and requirements are in the box below:

s =

1

2

gt

2

,

s t g

9.81m/s

2

5.5

1

2

9.81 ⋅ 5.5

2

>>> distance_traveled(5.5)
148.37625

distance_traveled(t)

Return the distance traveled by the object falling for t seconds.
Parameters:

Returns:

distance_traveled.py

t float A non-negative float, the duration of the fall in seconds.

float The distance traveled in meters.

Task 2: Booklet Layout
A booklet may be made by folding sheets of paper, as in the illustration below. When only one sheet of paper is used, the
booklet has 4 pages. If two sheets are used, the booklet has 8 pages. Every additional sheet contributes with 4 pages.
Therefore, the number of pages in a booklet is always a multiple of 4.

If we have a certain number of pages with content, and this number is not a multiple of 4, there will be up to 3 blank pages at
the end of the booklet.

Given a number of pages with content to be placed in a booklet, we want to know two things:

the total number of pages in the smallest booklet that can accommodate the content,

the number of blank pages in such a booklet.

Write a function that takes as input the number of pages of content. The function should return the total number of pages in the
smallest appropriate booklet, and the number of blank pages.

As an example, consider having 17 pages with content. Number 17 is not a multiple of 4, so pages need to be added. Adding
one or two blank pages will not be enough, since neither 18 nor 19 are multiples of 4. Adding three blank pages will give 20,
which is a multiple of 4. Therefore, the booklet has 20 pages, and there will be 3 blank pages. The desired output is shown in
the code cell below.

The filename and requirements are in the box below:

>>> booklet_layout(17)
(20, 3)

booklet_layout(content_pages)

Return the number of total and blank pages given content.
Parameters:

Returns:

booklet_layout.py

content_pages int A positive integer, the number of pages with content.

tuple The number of total pages and the number of blank pages.

Task 3: Reversed Text
Given a string of text, we want to reverse either the order of the words in the text, or the order of the letters in each word. You
can assume that the string of text only contains words written with letters from the English alphabet, and that the words are
separated by a single space.

Write a function that takes as input a string of words and a string with the option words or letters . The function should
return the string of text with the specified reversal. If the option is words , the order of the words should be reversed. If the
option is letters , the order of the letters in each word should be reversed.

Consider the example below.

In this example, the option is letters , so the order of the letters in each word is reversed.

The filename and requirements are in the box below:

>>> reversed_text('Hello world we are going to do some programming', 'letters')
'olleH dlrow ew era gniog ot od emos gnimmargorp'

reversed_text(text, option)

Reverse words or letters.
Parameters:

Returns:

reversed_text.py

text str A text consisting of words separated by spaces.

option str A string, either ‘words’ or ‘letters’.

str The reversed text.

Task 4: First Double Peak
Given a list of numbers, we want to locate the first peak. Usually, a peak is a number that is strictly larger than its first
neighbors (the number just before and the number just after). However, in this task, we want to locate a double peak, which is
a number that is strictly larger than both its first and its second neighbors (the two numbers before and the two numbers after).

Write a function that takes as input a list of floats. The function should return the index of the first double peak. If there is no
double peak, the function should return -1.

As an example, consider the list [1.2, 2.4, 3.1, 2.9, 3.6, 2.3, 1.9, 2.4] . The numbers from the list are also in the
figure below, where the x-axis represents the index of the numbers and the y-axis represents the values of the numbers.

0

1

2

3

0 1 2 3 4 5 6 7

Considering all numbers in order, the first two values should be ignored, as they have no two neighbors before. The value 3.1
a not strictly larger than its second neighbor with the value 3.6. The value 2.9 is not a peak either, as it is not strictly larger than
3.1. The value 3.6 (red) is a double peak as it is larger than both 3.1, 2.9, 2.3 and 1.9 (gray). The function should therefore
return the index of the value 3.6. which is 4, as shown in the code cell below.

The filename and requirements are in the box below:

>>> first_double_peak([1.2, 2.4, 3.1, 2.9, 3.6, 2.3, 1.9, 2.4])
4

first_double_peak(sequence)

Return first number strictly larger than its first and second neighbors.
Parameters:

Returns:

first_double_peak.py

sequence list A list of floats.

int The index of the first peak.

Task 5: Robust Values
Given a NumPy array of numbers, we want find the values which are not more than one standard deviation away from the
mean.

Given numbers , the mean and the standard deviation are

The robust values (that we want to keep) are less than exactly one standard deviation away from the mean, i.e. a robust value
 satisfies and .

Write a function which takes as input a NumPy array. The function should return a NumPy array containing only the robust
values in the same order as in the original array.

As an example, consider the input below.

The mean of the numbers is , and the standard deviation is (all values are here displayed with two
decimals). The robust values are in the interval , so only values and should be removed, as seen
in the code cell below.

The filename and requirements are in the box below:

N x

i

μ =

1

N

N

∑

i=1

x

i

and σ =

1

N

N

∑

i=1

(x

i

− μ)

2

.




⎷

x

i

μ− σ ≤ x

i

x

i

≤ μ+ σ

>>> import numpy as np
>>> x = np.array([41.42, 44.32, 45.56, 63.01, 12.22, 42.82, 43.73, 40.11])

μ = 41.65 σ = 13.00

[28.64, 54.65] 63.01 12.22

>>> robust_values(x)
array([41.42, 44.32, 45.56, 42.82, 43.73, 40.11])

robust_values(x)

Return values within one standard deviation from the mean of the input.
Parameters:

Returns:

robust_values.py

x numpy.ndarray A NumPy array.

numpy.ndarray A NumPy array with robust values.

Task 6: Population Convergence
We investigate a model which describes the change in the size of the population from year to year. The model is given by the
formula

where is the population size (in thousands) at year . The model parameters are the growth rate and the carrying
capacity . According to this model, if the parameters are reasonable (and you can assume this is the case), the population
will converge to the carrying capacity : if the population is larger than , it will decrease, and if it is smaller than , it will
increase.

We only investigate the situation where and we want to know how many years it takes for the population to be strictly
within 1% of . In other words, we want to know in how many years will the population size be in the interval between and

, not including the limits.

Write a function that takes as input the initial population size and the growth rate. The function should return the number of
years it takes for the population to be strictly within 1% of .

Consider the growth rate and initial population . The initial population is not within the interval between
and , so we compute the population after one year. We have (the
printed value is rounded) which is also not within the interval. The population growth continues as shown in the figure below,
where the x-axis represents the years and the y-axis represents the population size. The population size for each year is
shown with three decimals.

4.8

0

6.422

1

7.916

2

8.988

3

9.579

4

9.841

5

9.943

6

9.980

7

9.993

8

9.998

9

9.999

10

After 6 years, the (rounded) population size is , which is in the interval within 1% of , so the function should return 6,
as shown in the code cell below.

The filename and requirements are in the box below:

N

t+1

= N

t

+ r(1 −

N

t

K

)N

t

N

t

t r

K

K K K

K = 10

K 9.9

10.1

K = 10

r = 0.65 N

0

= 4.8 9.9

10.1 N

1

= 4.8 + 0.65 ⋅ (1 − 4.8/10) ⋅ 4.8 = 6.422

9.943 K

>>> population_convergence(4.8, 0.65)
6

population_convergence(N, r)

Return the number of years for population to be within 1% of K=10.
Parameters:

Returns:

population_convergence.py

N float A positive float, the initial population.

r float A positive float, the growth rate.

int The number of years.

Task 7: Event Manager
We want to create a class to represent an event (like a lecture or a concert), allowing for registering and de-registering
participants, while preventing duplicate registrations.

Write the class definition for the class EventManager . The register method should take a name as input and add it to the
list of registrations. If the name is already in the list, it should not be added again. The method should return True if the name
was added, and False if it was not. The deregister method should take a name as input, remove it from the list of
registrations and return True . If the name is not in the list it cannot be removed, and False should be returned. The
get_num_registrations method should return the number of participants currently registered.

Below is an example of using the class.

In this example, there ar no registrations initially. Then, an attempt to deregister Mike is made, but this is not possible. Then,
Mike is registered. Then, an attempt to register Mike again is made, but this is not possible. Then, John is registered. Finally,
Mike is deregistered. Finally, the number of registrations is checked and printed.

The filename and requirements are in the box below:

>>> my_event = EventManager()
>>> my_event.get_num_registrations()
0
>>> my_event.deregister('Mike')
False
>>> my_event.register('Mike')
True
>>> my_event.register('Mike')
False
>>> my_event.register('John')
True
>>> my_event.deregister('Mike')
True
>>> my_event.get_num_registrations()
1

EventManager()

A class that represents an event.
__init__()

Initialize the event with no registrations.
register(user)

Register the user as an event participant.
Parameters:

Returns:

deregister(user)

Deregister the user.
Parameters:

Returns:

get_num_registrations()

Return the number of users currently registered.
Returns:

event_manager.py

user str The user nqm3 to register.

bool True if the user was successfully registered, False otherwise.

user str The user nqm3 to deregister.

bool True if the user was successfully deregistered, False otherwise.

int The number of registered users.

Task 8: Name Frequency
Given a list of full names, we need to know how many times each first name occurs in the list. Here, the first name is the part
of the full name before the first space.

Write a function that takes a list of full names as input. The function should return a dictionary where the keys are the first
names from the list. The value of each key should be the number of times this first name occurs in the list.

As an example, consider the input below.

The first names are Liv, Mads, Steve, Anna, Simon, and Mads. The first name Mads occurs twice, and the other first names
occur once. The function should therefore return the dictionary with keys and values as shown below.

The filename and requirements are in the box below:

>>> names = ['Liv Ea Jensen',
... 'Mads Oliver',
... 'Steve Madsen',
... 'Anna Simon',
... 'Simon Gade',
... 'Mads Kai Jensen']

>>> my_name_frequency = name_frequency(names)
>>> for name in my_name_frequency:
... print(name, my_name_frequency[name])
Liv 1
Mads 2
Steve 1
Anna 1
Simon 1

name_frequency(names)

Return frequency of names in the list.
Parameters:

Returns:

name_frequency.py

names list A list of strings.

dict The frequency of names.

Task 9: Count Differences
The results of an experiment are recorded by two independent observers. The observers record the results as a sequence of
comma-separated integers, which is saved in a file containing one line of text. We need to count the number of differences
between the recorded results of the two observers.

Write a function that takes as input two strings containing the names of the files with the experiment results. If the number of
results in one file is different from the number of results in the second file, the function should return -1. If the number of results
is the same in the two files, the function should return the number of results that the two observers have recorded differently.
Consequently, the function should return 0 if the results in both files are the same.

As an example, consider the two files below.

The content of the first file is:

The content of the second file is:

Both files contain 10 recorded results, so we inspect each pair of recorded results. The first three pairs are the same (345,
349, 367) but the fourth pair is different (299 and 300). Furthermore, the fifth and ninth pairs are different. The function should
therefore return 3, as shown in the code cell below.

The filename and requirements are in the box below:

>>> filename1 = 'files/results_A1.txt'
>>> filename2 = 'files/results_A2.txt'

345, 349, 367, 299, 345, 445, 345, 465, 299, 345

345, 349, 367, 300, 354, 445, 345, 465, 300, 345

>>> count_differences(filename1, filename2)
3

count_differences(filename1, filename2)

Number of differences in recorded results.
Parameters:

Returns:

count_differences.py

filename1 str Filename of the first file.

filename2 str Filename of the second file.

int Number of differences in recorded results.

Task 10: Limited Event Manager
We want to create a subclass of the EventManager class from Task 7. This subclass should prevent the registration of
participants if the limit on the number of participants has been reached.

Write the class definition for the subclass LimitedEventManager , which inherits from EventManager . Each instance of the
subclass should store the registration limit. The constructor of the new class should take as input the registration limit (a non-
negative integer). The register method should ensure that the number of registrations does not exceed the limit. If the
registration is not possible because the limit is reached, the method should return False . If the limit is not reached, the
registration method should act as specified in EventManager . You should modify the necessary methods of the class to
achieve this behavior, and inherit the rest of the methods from the parent class.

An example of using the class is shown below.

In this example, there are no registrations initially. Then, Mike is registered, and then Emily and Sara are registered. Then, an
attempt to register Peter is made, but this is not possible as 3 people are already signed up. Finally, we get and print the
number of registrations.

The filename and requirements are in the box below:

>>> my_event = LimitedEventManager(3)
>>> my_event.register('Mike')
True
>>> my_event.register('Emily')
True
>>> my_event.register('Sara')
True
>>> my_event.register('Peter')
False
>>> my_event.get_num_registrations()
3

LimitedEventManager()

A class that represents an event with limited number registrations.
__init__(registration_limit)

Initializes the limited event with a registration limit.
Parameters:

register(user)

Register the user if limit is not reached.
Parameters:

Returns:

event_manager.py

registration_limit non-negative int The maximum number of allowed registrations.

user str The user name to register.

bool True if the user was successfully registered, False otherwise.

