
OOP code

Lecture 9: Classes, part 1
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023



OOP code

Today's lecture

1. An introduction to OOP (15 min)

2. A coding introduction to OOP (45 min)

OOP: object-oriented programming

▶ OOP is a way of structuring programs
where properties and behavior are
bundled into classes consisting of
individual objects.

▶ The true value of OOP is visible in bigger
projects



OOP code

Recall things we've seen

1 f = open('my_file.txt', 'w') # file object
2 f.write('This is a new file\n') # file method
3 f.close()

1 my_string = 'Hello world!' # string object
2 shout = my_string.upper() # string method

1 my_list = ['C', 'D', 'A'] # list object
2 my_list.append('B') # list method
3 my_list.sort() # list method

1 my_dict = {'a': 'apple', b: 'banana'} #
dictionary object

2 fruit = my_dict.values() # dictionary method

1 def my_function(name):
2 print(f'Hello world! says {name}')
3 something = my_function # function object

All entities in Python are objects

▶ More obvious: Lists, strings, dictionaries, �le
objects.

▶ Less obvious: Integers, �oats, functions.
▶ Under the hood: Everything!

An object is the collection of data and methods that
operate on those data.

Why teach OOP?

▶ Sometimes, you don't need to think too much
about it.

▶ Sometimes it is important to know that you work
with objects. (Examples from your possible
future: pandas DataFrame, NumPy ND-array,
PyTorch tensor class or nn module.)

▶ Sometimes, it may be useful to de�ne your own
classes.



OOP code

OOP in Think Python

Chapter 15 You can de�ne classes, your own data types, to create objects that represent some
entity (a point, a patient, a customer, a train, an image). Such objects are mutable.

Chapter 16 You can write functions that take user-de�ned objects as parameters, modify objects,
or return them as results.

Chapter 17 You can write methods, blocks of code similar to functions, but associated with a
particular class. A special method is used when initializing (creating) objects.
You can de�ne operators for your data types, and functions that handle di�erent data
types (polymorphism).

Chapter 18 A new class can be a modi�ed version of an existing class (inheritance).

Week 9 covers Chapters 15 and 16, but also methods and a special method used for initialization.



OOP code

A note on terminology

OOP is used in many programming languages, and terminology may vary slightly.

Type and class is the same

▶ In Python, a type and a class is the same. (It used to be that types are built-in, and classes user-made.)

Instance of a class

▶ Class is a template, prototype, blueprint, mold . . . for de�ning instances.
▶ Instance is a concrete object of a certain class.

Objects

▶ Term object and instance are sometimes used interchangeably. (Instances are objects and every object
is an instance of some class.)

▶ In Python, everything is an object. (A class itself is also an object, a class object, of type class.)
▶ If it helps, you can think of the word object as a something.

In conclusion: I'll try saying class and instance to be precise.



OOP code

Code shown live during lecture

I want to somehow represent the time of day, consisting of
hours and minutes.

Representing time, options so far

1 # representing time using two variables
2 hours = 13
3 minutes = 8
4

5 print(f'{hours:02}:{minutes:02}')
6

7 #representing time using a dictionary
8 my_time = {'hours': 13, 'minutes': 28}
9 print(f"{my_time['hours']:02}:{my_time['minutes

']:02}")
10 print(my_time)

To represent time I can use two integer variables, one for
hours, one for minutes. Or, I can use a built-in type, for
example dictionary as shown here.

First example of a class

1 class MyTime:
2 pass # this is a placeholder for some code
3

4 my_time = MyTime() # an instance of the class
5 my_time.hours = 13
6 my_time.minutes = 37
7

8 print(my_time.hours)
9 print(my_time.minutes)
10

11 other_time = MyTime() # another instance
12 other_time.hours = 17
13 other_time.minutes = 00
14

15 print(other_time.hours)
16 print(other_time.minutes)

MyTime is a class, and I create two instances (objects) of this
class: my_time and other_time.

We would normally assign attributes (hours and minutes) in
the initialization method, but in this �rst example, we do it
di�erently as we don't yet know how self works.



OOP code

Code shown live during lecture

Objects are mutable

1 class MyTime:
2 pass
3

4 my_time = MyTime()
5 my_time.hours = 13
6 my_time.minutes = 37
7

8 other_time = my_time
9 other_time.hours = 10
10

11 print(my_time.hours)
12 print(my_time.minutes)
13 print(other_time.hours)
14 print(other_time.minutes)

Changing other_time also a�ects my_time as they point to
the same object.

Functions may take objects

1 class MyTime:
2 pass
3

4 my_time = MyTime()
5 my_time.hours = 13
6 my_time.minutes = 37
7

8 def print_time(time):
9 print(f'{time.hours:02}:{time.minutes:02}')
10

11 print_time(my_time)

I can write functions that take user-de�ned objects as
arguments. Such functions may leave the objects unchanged
(pure functions) or modify objects (modi�ers). Here,
print_time is a pure function. An example of a modi�er
would be a function incrementing the hours of the time
object it received.
I can also write functions that return user-de�ned objects.
An example would be a function that asks a user to input
hours and minutes as integers, and then creates a MyTime

instance with those values as attributes.



OOP code

Code shown live during lecture

First example of a method

1 class MyTime:
2

3 def print_time(self):
4 print(f'{self.hours:02}:{self.minutes:02}')
5

6 my_time = MyTime()
7 my_time.hours = 13
8 my_time.minutes = 37
9

10 my_time.print_time()

Now, print_time is moved inside the class body. This makes
it a method of the MyTime class.

The �rst argument of the method, usually called self, is
always the instance of the class.

The argument self is the object the method works on. The
method is called using a dot notation: object-dot-method.

__init__ method

1 class MyTime:
2

3 def __init__(self, hours, minutes):
4 self.hours = hours
5 self.minutes = minutes
6

7 def print_time(self):
8 print(f'{self.hours:02}:{self.minutes:02}')
9

10 my_time = MyTime(23, 4)
11 my_time.print_time()

__init__ is a special method that gets called when an
instance of the class is created.

Usually, all instance attributes get assigned in this method.

This is the �rst example showing the usual way of de�ning a
class in Python: it would start with the __init__ method.



OOP code

Code shown live during lecture

Full example

1 class MyTime:
2

3 def __init__(self, hours, minutes):
4 self.hours = hours
5 self.minutes = minutes
6

7 def print_time(self):
8 print(f'{self.hours:02}:{self.minutes:02}')
9

10 def increment_hours(self):
11 self.hours += 1
12 if self.hours == 24:
13 self.hours = 0
14

15 def increment_minutes(self):
16 self.minutes += 1
17 if self.minutes == 60:
18 self.minutes = 0
19 self.increment_hours()
20

21 my_time = MyTime(23, 55)
22 for i in range(10):
23 my_time.increment_minutes()
24 my_time.print_time()

A full example of MyTime class. The example includes:

▶ Keyword class telling Python that what comes in the
indented block is a de�nition of a class.

▶ __init__ method which gets called (invoked) every time
an instance of the class is created. This happens in line
21 of the code.

▶ print_time method used for printing the state of the
instance, but leaving the instance unchanged.

▶ increment_hours which changes the state of the
instance.

▶ increment_minutes which changes the state of the
instance � notice that it uses increment_hours method.

The example does not include other possibilities (try it
yourself):

▶ A method takes additional input, not only self. For
example, implement a method with increments minutes
for a certain number of minutes.

▶ A method with returns something. For example,
implement a method with returns a string
'Time is <hh>:<mm>', where <hh> and <mm> are hours
and minutes.


	OOP
	

	code
	


