
Code quality

Lecture 12: Algorithms and e�ciency
Morten Rieger Hannemose, Vedrana Andersen Dahl
Fall 2023



Code quality

Course overview

▶ Data types int and float and computation

▶ Functions

▶ Flow control with conditions and loops

▶ Data types str, list, methods, indexing and
traversing

▶ Data types dict, tuple

▶ Reading and writing �les

▶ Object-oriented programming

▶ Numpy, matplotlib

Last two weeks of the course (this week and
next week)

▶ Algorithms and e�ciency

(writing e�cient and readable code)

▶ Summary and discussion of the exam

(wrapping up, revisiting midterm exam, and
extras)



Code quality

Code quality

▶ Software quality: reliability, e�ciency, security,
maintainability.

▶ In this course, the focus is on:
▶ Correctness (the only thing we test)
▶ E�ciency
▶ Readability
▶ Style

Code size

▶ In this course: 10-20 lines of code.

▶ My largest project: a few thousand lines of
code.

▶ Video game: A few million lines of code



Code quality

Code e�ciency and style

Examples on

▶ Counting things

▶ Searching for things

▶ (a bit on) Sorting and merging things

Focus on

▶ Avoiding unnecessary computation

▶ Carefully choosing variables

▶ (a bit on) Commenting

▶ Common pitfalls



Code quality

Counting and searching

What is the intended result?

▶ Is there a . . .

▶ Where is the . . .

▶ How many . . .

▶ What are . . .

What is the occurrence I'm searching for?

▶ . . . number 3? . . . letter 'F'?

▶ . . . number larger than 3? . . . capital letter?

▶ . . . number larger than both its predecessor
and successor?

▶ . . . an item best according to some measure?

▶ . . . number with an odd index which is larger
than 3?

Remember from the mid-term test exam

▶ First alarm: When did the alarm occur? (Index of the �rst occurrence of a
number either . . . )

▶ Typical successor: What is typically following a letter? (What is . . . )

▶ Dice fairness. What appears most frequently and how many times?



Code quality

Code used for coding examples

Simplifying code

1 text = 'Something'
2 too_long = len(text)>10
3 if too_long: # instead too_long==True
4 print('The text is too long')
5

6 def should_pay_half_price(age):
7 # instead if-sentence
8 return (age < 18) or (age > 65)
9

10 age = 75
11 full_price = 100
12 # either full price or half price
13 # instead of if-sentence
14 price = 0.5 * full_price + 0.5 * full_price

* (18 <= age <= 65)
15

16

Avoid unnecessary computation

1 text = 'This is a very long text which is
slow to compute the length of.'

2 len_text = len(text)
3 for p in [10, 50, 90]:
4 print(f'{p}% is {p / 100 * len_text}')
5

6



Code quality

Code used for coding examples

Searching and counting, lists

1 items = [5, 6, 8, 2, 4, 5, 7, 8, 4, 6, 4, 3, 5, 6, 7, 3, 2,
4, 5, 6, 7, 8, 9]

2

3 # Use built-in list methods
4 print(3 in items)
5 print(items.index(3))
6 print(items.count(3))
7

8 # Is there an occurrence?
9 found_it = False

10 for item in items:
11 if item > 6:
12 found_it = True
13 break
14

15 # Where is the first occurrence?
16 index = -1 # a dedicated value
17 for i in range(len(items)):
18 item = items[i]
19 if item > 6:
20 index = i
21 break
22

23 # How many occurrences?
24 counter = 0
25 for item in items:
26 if item > 6:
27 counter += 1
28

Searching and counting, lists

1 # How many occurrences?
2 counter = 0
3 for item in items:
4 if item > 6:
5 counter += 1
6 print(counter)
7

8 # Looking for the index of somehow best item, with smallest
abs(item - 5)

9 # max and min are special cases of this
10 best_distance = abs(items[0] - 5)
11 best_distance = 1000
12 for item in items:
13 this_distance = abs(item - 5)
14 if this_distance < best_distance:
15 best_distance = this_distance
16

17 # Larger than both neighbors
18 for i in range(1, len(items) - 1):
19 if items[i] > items[i - 1] and items[i] > items[i + 1]:
20 print(items[i])
21

22 # Odd index and larger than 6
23 for i in range(len(items)):
24 if i % 2 == 1 and items[i] > 6:
25 print(items[i])
26



Code quality

Code used for coding examples

Searching and counting, numpy and lists

1 import numpy as np
2

3 numpy_items = np.array(items)
4 print(3 in numpy_items)
5 # print(numpy_items.index(3)) # This will not work
6 print(numpy_items == 3)
7 print((numpy_items == 3).any())
8

9 # print(numpy_items.count(3)) # This will not work
10 print((numpy_items == 3).sum())
11

12

13 print(np.where(numpy_items == 3))
14 print(numpy_items[::2])
15

16 peak = (numpy_items[1:-1] > numpy_items[2:]) & (
numpy_items[1:-1] > numpy_items[:-2])

17 print(peak)
18

19 print(numpy_items.max())
20 print(numpy_items.argmax())
21

Sorting and merging

1 items = [5, 6, 8, 2, 4, 5, 7, 8, 4, 6, 4, 3, 5, 6,
7, 3, 2, 4, 5, 6, 7, 8, 9]

2 print(sorted(items))
3 print(np.sort(numpy_items))
4 print(np.unique(numpy_items))
5

6 items = [4, 6, 3, 8, 5]
7 other_items = [5, 8, 11, 13, 9]
8 for i in other_items:
9 if i not in items:

10 items.append(i)
11 print(items)
12


	Code quality
	


