
LECTURE
NOTES

0200x

Programming in Python

Tue Herlau
tuhe@dtu.dk

February 20, 2024
Version 2023.0

Foreword, August 2023

This compendium discuss a few, extra topics that are not discussed in our
main textbook, ”Think Python” [Dow16], but which are nevertheless of im-
portance for engineers.

The notes do not replace ”Think Python” and should not be read in
isolation. We recommend you first complete your weekly reading in ”Think
Python”, and then read the relevant chapters here.

All feedback on the compendium is welcome, and you can send it by email
(tuhe@dtu.dk) or post it on our Discord forum which you can find on the
main website: https://cp.compute.dtu.dk.

Throughout the notes we use the following symbol(s):

/ A section which is slightly technical, and where only the general
gist of the result is exam relevant.

// A section with extra material included for completeness but not
relevant for the exam.

tuhe@dtu.dk
https://cp.compute.dtu.dk

Contents

1 Plotting 4
1.1 Plotting points . 5

1.1.1 Point styles and labels 6
1.1.2 Labels, legends and files 6

1.2 Plotting lines . 7
1.2.1 Legendary legends . 8

1.2.2 Advice I give to students about plotting// 8

2 Numerical python 10
2.1 Arrays . 11

2.1.1 Creating matrices . 11
2.1.2 Size and shape . 12

2.2 Indexing . 13
2.2.1 Slicing . 13

2.3 Operations . 14
2.4 Operations and plotting . 15

3

Chapter 1

Plotting

Matplotlib allows you to create graphics. These can be very simple, i.e. 2d
plots of black dots, to complex 2 and 3 dimensional plots that involve different
colors and text. Although out of scope for this course, you can even make
animations in matplotlib. Figure 1.1 shows two examples of complicated
matplotlib plots suitable for a report or a scientific paper.

Matplotlib is an example of a library or external package in python.library
external
package

That means that matplotlib is not available when you just download and
install python from https://python.org, and the people who develop mat-
plotlib are not the same group of people who develop e.g. the math -package in
python. However, assuming you follow the installation guide for the course,
one of the steps installed matplotlib automatically.

The diverse uses of matplotlib also means it can look quite complex,

0 1 2 3 4 5
Time

0.05

0.00

0.05

s1
 a

nd
 s2

0 10 20 30 40 50
Frequency

81

71

61

51

41

CS
D

(d
B)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
line plot with data points

Figure 1.1: Two examples of matplotlib graphs that display some of the
capabilities for 2d plots in matplotlib.

4

https://python.org

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

chapter_matplotlib/matplotlib_plots.py

import matplotlib.pyplot as plt

plt.plot(1, 2, 'k.') # plot a black point at (1, 2)

plt.plot(2, 3, 'k.') # plot a black point at (2, 3)

plt.plot(4, 1, 'r.') # plot a red point at (4, 1)

plt.plot(5, 0, 'k.') # plot a black point at (5, -1)

plt.show()

Figure 1.2: Example of a matplotlib plot of 5 points. Notice the arguments
'k.' and 'r.' are responsible for the coloring

especially if you look at the official documentation. Don’t let that discourage
you. Most users (including myself) only learn a few things by heart, and then
ask google or ChatGPT for help with the rest. My estimate is 90% of all
complicated matplotlib graphs contains copy-pasted code.

What we will focus on here are the few bits of matplotlib that you will
probably benefit from actually learning by heart. A slight problem is that
matplotlib makes use of things in the python language you only learn later,
such as lists or numpy (another python library). For that reason the chapter
is divided into three parts that will only reference things you know at the
time when you need to read them.

1.1 Plotting points

When it comes to displaying data simple is very often better, and the simplest
kind of graphics is the humble plot of (x, y) points in a standard 2-axis x/y
coordinate system. The code in fig. 1.2 display 5 points, 4 of which are black
and one of which are red. To explain the code:

� import matplotlib.pyplot as plt : This line imports matplotlib and store the
plotting library in a variable called plt we can subsequently use. The
name can be anything, but plt is what everyone uses.

� plt.plot(1, 2, 'k.') : This will plot a point at coordinates (x, y) = (1, 2),
i.e., the left-most point in the figure. The third argument, 'k.' is a
str which determine the style of the point: 'k' makes the point black
and '.' makes it a dot.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1

2

3

4

5

chapter_matplotlib/matplotlib_plots.py

import matplotlib.pyplot as plt

plt.plot(1, 1, 'b.') # blue point

plt.plot(2, 5, 'ro') # red circle

plt.plot(3, 2, 'k*') # black star

plt.plot(4, 3, 'md') # magenta diamond

plt.show()

Figure 1.3: Examples of different marker styles and colors.

� plt.plot(4, 1, 'r.') : This plot the red point at coordinates (x, y) =
(4, 1). The color red is determined by 'r' in the third argument.

� plt.show() : This line is responsible for actually showing the plot in a
new window. A common mistake is to omit this line in which case
nothing happens.

1.1.1 Point styles and labels

Lets expand a bit on the example by considering some alternative plot styles
and axis labels. You can combine different colors and styles by changing the
third input argument as the example in fig. 1.3 shows 1, but now we are
moving into territory where you should use google whenever you want to do
something specific rather than try to memorize tedious details!

1.1.2 Labels, legends and files

The last example shows how you can set axis labels, a plot title, and save
your result to a PDF file. We recommend adding such information since it
makes it easier for a reader, and you, to figure out what the plot is supposed
to show. Try to run this code in fig. 1.4 and see what happens:

The file generated by this code, my_plot.pdf , will be saved in the directory
from which you called python.

1see https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.

html for a fuller list of options to matplotlib

https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.html

1.0 1.5 2.0 2.5 3.0
Fumble around

1

2

3

4

5

6

Fin
d

ou
t

A truth about computers and people
chapter_matplotlib/matplotlib_plots.py

import matplotlib.pyplot as plt

plt.plot(1, 1, 'ko')

plt.plot(2, 2, 'ko')

plt.plot(3, 6, 'ko')

plt.xlabel('Fumble around')

plt.ylabel('Find out')

plt.title('A truth about computers and people')

plt.savefig("my_plot.pdf") # Save to this file.

plt.show()

Figure 1.4: Setting axis labels, adding a title and saving to a file.

1.2 Plotting lines

Plotting lines is a straight forward generalization of plotting points. We still
use the format plt.plot(x, y) , but in the case where x and y are lists of x
and y coordinates the result will be plotted as a line. Carefully inspect the
plot and code in fig. 1.5, and note that the first point is at (0, 0), and the
last point is at (4, 16).

0 1 2 3 4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

chapter_matplotlib/matplotlib_plots.py

import matplotlib.pyplot as plt

plt.plot([0, 1, 2, 4], [0, 1, 4, 16], 'k-')

plt.show()

Figure 1.5: Setting axis labels, adding a title and saving to a file.

You will also notice that when we plot lines, we get a few more options for
styling the plot. The syntax "k-" tells matplotlib to color the line black ("k")
and plot it as an unbroken line ("-") 2. There are a wealth of alternative
options, however, simple lines and points, as illustrated in fig. 1.6, will by far
cover most of your needs.

2See https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.

html for other choices, although google is typically much more helpful than the matplotlib
documentation

https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html

0 1 2 3 4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

chapter_matplotlib/matplotlib_plots.py

import matplotlib.pyplot as plt

plt.plot([0, 1, 2, 4], [0, 1, 4, 16], 'ko-')

plt.plot([0.5, 2.3, 3.2], [5, 2.5, 3.4], 'r*')

plt.show()

Figure 1.6: Alternative line and point styles. Notice how we can control
whether the data series is plotted as a line or a point cloud using a single
option "r*" .

1.2.1 Legendary legends

Judging by the time spend talking about legends during exams, one would
think plot legends are the cornerstone of academic writing. Anyway, they are
very easy to add to your plot: You specify the string label="Legendary Legend" ,
and insert the line plt.legend() just before you call plt.show() , see fig. 1.7.

0 1 2 3 4
0.0

2.5

5.0

7.5

10.0

12.5

15.0
chapter_matplotlib/matplotlib_plots.py

import matplotlib.pyplot as plt

plt.plot([0, 2, 4], [0, 3, 16], 'ko-', label="Some stuff")

plt.plot([0.5, 3.2], [5, 3.4], 'r*', label="More stuff")

plt.xlabel("One thing")

plt.ylabel("Another thing")

plt.legend()

plt.show()

Figure 1.7: Two data series with inserted legends. The plot has also accrued
typical plot crustaceans in the form of axis labels.

1.2.2 Advice I give to students about plotting //

Your reader will have limited time, including in your bachelor thesis. The
plots are the one thing they are most likely to pay attention to, and therefore
gives you the best opportunity to present the gist of your results. I try to
emphasize the following:

� Decide what point you want to make with your plot and use that to
decide on graphical elements: Typically what you want to say is simply
that a graph goes up, or one graph is above another. Keep it very simple
and use labels, etc. to the best effect.

� Make it clear what is being plotted: Simple is better. Avoid transform-
ing data where possible.

� Simple line and point plots are often the best.

� Use the plot caption as mini-conclusions. For instance, suppose you
want the reader to take away that your experiment is better than an-
other because y increase as a function of x. Then simply tell that to
the reader: ”We see that y increases as expected, thereby confirming
our hypothesis that we frobulated foobar”. A lazy reader who
skip the rest of the text (i.e., most readers) will now be primed to just
accept your conclusion.

� Have a few quality plots rather than 12 junk plots you don’t discuss.

� Make your plots early. They will often help you debug and understand
whatever you are doing, and serve as useful ways to communicate in-
termediate results to e.g. your team members, colleagues, or advisor.

Chapter 2

Numerical python

NumPy is considered the standard for handling numerical data in Python
and is widely integrated into the scientific Python and PyData ecosystems.

NumPy is used across a range of disciplines for cutting-edge scientific and
industrial research. Its API is heavily utilized in popular scientific Python
packages like Pandas, SciPy, Matplotlib, scikit-learn, and PyTorch.

At its core, NumPy is used to represent and manipulate vectors and ma-
trices. NumPy also provides a comprehensive set of mathematical functions
such as matrix multiplication. Finally, NumPy is extremely fast.

When to use NumPy

Although NumPy can be an extremely useful tool, it does not replace similar
data data-structures such as list or tuple . These data-structures remain the
better choice for small lists, or when the items are not all numbers, and all
other circumstances where you don’t need NumPy-specific functionality.

You can think about NumPy as an electrical food processor and the
regular list as a knife and cutting board: There are situations where the
food processor excels, but the cutting board is more versatile and faster to
use for simple tasks.

� Use NumPy when: You are dealing with vectors and matrices and you
need matrix-operations such as multiplication.

� Otherwise: use a list , tuple or dict . If you feel something that just
involves a list of things is simpler in NumPy, ask ChatGPT how it can
be done using regular lists.

10

2.1 Arrays

Let’s just jump into it. Since NumPy is a library, we first need to import it
to use it as so: import numpy as np . This is how we can use NumPy to define
an array from a regular python list :

1 >>> import numpy as np

2 >>> a = np.array([0, 1, 2, 3])

3 >>> a # This variable now represents the array.

4 array([0, 1, 2, 3])

This array corresponds to the mathematical vector x⊤ =
[
0 1 2 3

]
.

Obviously this is not very efficient, so NumPy contains functions to create
constant arrays containing either all zero or all one entries as follows:

1 >>> import numpy as np

2 >>> np.zeros(4)

3 array([0., 0., 0., 0.])

4 >>> np.ones(4)

5 array([1., 1., 1., 1.])

Finally the following two functions are often used. the first create an
array of integers and can be though of an numpy analogue to range(5) :

1 >>> np.arange(5)

2 array([0, 1, 2, 3, 4])

While this is useful for creating an array of n equidistant element. You
call it in the format: np.linspace(start, end, n) :

1 >>> np.linspace(0, 10, 5)

2 array([0. , 2.5, 5. , 7.5, 10.])

2.1.1 Creating matrices

What most people associate with numpy is matrices, and again numpy offers
a range of ways to create matrices or, as it is called in numpy, 2d arrays.

Perhaps the most direct way is to convert a list-of-lists to a matrix:

1 >>> np.array([[0, 1, 2], [5, 6, 7]])

2 array([[0, 1, 2],

3 [5, 6, 7]])

But the trick with np.ones and no.zeros work as well, except now you need
to pass in a tuple (2,3) :

1 >>> np.zeros((2, 3))

2 array([[0., 0., 0.],

3 [0., 0., 0.]])

Footguns Numpy is a bit famous for its uninformative errors. As an ex-
ample, suppose we accidentally omit the double parenthesis:

1 >>> np.zeros(2, 3)

2 Traceback (most recent call last):

3 File "<console>", line 1, in <module>

4 TypeError: Cannot interpret '3' as a data type

The conclusion is that you can expect some pain every now in a while
when you use NumPy, so be careful to incrementally run (and test) your
code.

2.1.2 Size and shape

In NumPy, the size of an array represents the physical number of elements
whereas the shape will give you the height and width as a tuple. As an
example:

1 >>> a = np.zeros((3, 5))

2 >>> a.size

3 15

4 >>> a.shape

5 (3, 5)

Obviously, the size is just the height multiplied by the width. For 1d
arrays, the size behaves as expected, but the shape will return a 1-dimensional
tuple:

1 >>> a = np.zeros(4)

2 >>> a.size

3 4

4 >>> a.shape

5 (4,)

2.2 Indexing

Most operations you can do with a python list can also be done with an
array. For instance, suppose we start out with this array:

1 >>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

2 >>> print(x)

3 [[1 2 3 4]

4 [5 6 7 8]

5 [9 10 11 12]]

6 >>> x[0, 1] # in row, column format

7 2

8 >>> x[2, 3] # The bottom-right element.

9 12

We can then access a single element by using square brackets:

1 >>> a = np.zeros((2,3))

2 >>> a[1,2] = 42

3 >>> print(a)

4 [[0. 0. 0.]

5 [0. 0. 42.]]

Obviously this also works for regular arrays:

1 >>> a = np.array([2, 4, 6, 7])

2 >>> a[2]

3 6

4 >>> a[1] = 42

5 >>> print(a)

6 [2 42 6 7]

2.2.1 Slicing

Slicing refers to creating arrays from arrays using the : -symbol. The most
common way to use slicing is to select row or column vectors from 2d arrays
as follows:

1 >>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

2 >>> print(x)

3 [[1 2 3 4]

4 [5 6 7 8]

5 [9 10 11 12]]

6 >>> x[0,:]

7 array([1, 2, 3, 4])

8 >>> x[:,1]

9 array([2, 6, 10])

We can also use this to set an entire row or column as follows:

1 >>> x[:,3] = [-1, -2, -3]

2 >>> print(x)

3 [[1 2 3 -1]

4 [5 6 7 -2]

5 [9 10 11 -3]]

2.3 Operations

NumPy of course allows you to add, subtract arrays, and multiply them with
constants. Here are some examples that all use 2d arrays:

1 >>> x = np.array([[1, 2], [3, 4]])

2 >>> y = np.array([[0, -2], [1, -2]])

3 >>> print(x)

4 [[1 2]

5 [3 4]]

6 >>> print(y)

7 [[0 -2]

8 [1 -2]]

9 >>> x + y

10 array([[1, 0],

11 [4, 2]])

12 >>> x - y

13 array([[1, 4],

14 [2, 6]])

15 >>> 2 * x

16 array([[2, 4],

17 [6, 8]])

What about matrix-multiplication? The immediate idea, x * y , does not
work:

1 >>> x * y

2 array([[0, -4],

3 [3, -8]])

In fact, it will compute[
1 2
3 4

] [
0 −2
1 −2

]
=

[
1× 0 2× (−2)
3× 1 4× (−2)

]
. (2.1)

To multiply two matrices, you need to use the (new!) @ -symbol:

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

chapter_numerical/numerical_plots.py

import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi , 20)

y = np.sin(x)

plt.plot(x, y, 'k.-') # Use plt.plot as usual.

plt.plot(x, np.cos(x), 'rs-') # Shorter.

plt.show()

Figure 2.1: We use Matplotlib to plot two arrays created by NumPy . Note
that the Matplotlib syntax is similar to what you have already seen in chap-
ter 1. Use the line style "k-" together with a much higher number n of points
for smooth curves.

1 >>> x @ y

2 array([[2, -6],

3 [4, -14]])

This also works for matrix-vector multiplication. For instance,

1 >>> x @ np.array([1, 2])

2 array([5, 11])

3 >>> np.array([1, 2]) @ x

4 array([7, 10])

will compute[
1 2
3 4

] [
1
2

]
=

[
1 + 4
3 + 8

]
=

[
5
11

]
,

[
1 2

] [1 2
3 4

]
=

[
7 10

]
. (2.2)

2.4 Operations and plotting

NumPy provides it’s own version of the functions in the math -module,
but which accepts NumPy arrays as inputs. For instance, this is how we can
compute the cosine of a small array, which also showcase that NumPy has
its own copy of the constant π:

1 >>> x = np.asarray([0, 1, np.pi/2])

2 >>> print(x)

3 [0. 1. 1.57079633]

4 >>> np.sin(x)

5 array([0. , 0.84147098, 1.])

Similarly, nearly all libraries knows how to interact with numpy. For
instance, fig. 2.1 illustrates how you can quickly plot a full period of the sine
and cosine function in 20 equidistant locations (note how we use np.linspace

to obtain the points):

Bibliography

[Dow16] Allen Downey. Think Python. O’Reilly Media, Sebastopol, CA, 2nd
edition, updated for python 3 edition, 2016. Available at https:

//greenteapress.com/wp/think-python-2e/.

17

https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/

	Plotting
	Plotting points
	Point styles and labels
	Labels, legends and files

	Plotting lines
	Legendary legends
	Advice I give to students about plotting '057'057

	Numerical python
	Arrays
	Creating matrices
	Size and shape

	Indexing
	Slicing

	Operations
	Operations and plotting

